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LINEAR INTEGER PROGRAMMING

THE PROBLEM

The following problem provided the motivation for this study:

Maximize z = cx

subject to

Ax 6 b

x > 0, and x is an integer

where

A is an m X n matrix

b is a m X 1 column vector

x is a n X 1 column vector

c is a 1 X n row vector.

This is a standard linear integer programming problem. Problems of this form occur
quite frequently in modern technology and in numerous applications. In many cases the
ease of formulation is quite deceptive because they are in general very difficult to solve
numerically.

During the last decade a powerful new method, the group theoretic approach, was
developed. This novel approach was pioneered by several research workers: Glover [1],
Gomory [2], Hu [3], and White [4].

This report is concerned with some of the mathematical aspects of the group theoretic
approach to linear integer programming. The manner in which a group is associated with a
linear integer program is discussed. Corresponding to each linear integer program is an
associated polyhedron. The geometric structure of this polyhedron reflects the structure
of the linear integer program. More precisely, if one knows the polyhedron, then under
appropriate conditions the optimal solution of the integer program is known. For alge-
braic reasons, these polyhedra will be called Abelian polyhedra. Some properties of
Abelian polyhedra associated with Abelian groups are considered. Finally, a computer
implementation of the group theoretic approach is presented in Appendix A.

Note: Manuscript submitted July 10, 1974.
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JAMES J. SWANEK

THE GROUP OF A LINEAR INTEGER PROGRAM

Consider the integer program:

Maximize z = cx

subject to

Ax = b

x > 0, and x is an integer

where A is an m X n matrix.

We may assume that A contains the m X m identity matrix Im as a submatrix. This
is not too restrictive because we can add slack variables to a set of less-than-or-equal-to
inequalities, and any linear program can be expressed in terms of less-than-or-equal-to
inequalities. In addition, assume that A and b contain only integer entries.

Suppose an optimal, not necessarily integral, solution £ = (Xe, xiN) has been obtained
with optimal basis B where XB and XN are the basic and nonbasic variables, respectively.
The problem is reformulated as

Maximize z = cx = CBiB + CNiN

where

AX= BXB + N.rN = b

;> 0.

Since

XB = B-1 (b - NCN),

then

cX = CBB'1 (b - NiN) + CNiN

= CBB-1b - (CBB-1N - CN)XN

= cBB-Bb - CkiXN

where CN = CBB-1N - CN > 0 is the relative cost of XN.

The problem is to find a nonnegative integer vector xi = (x' XN) that maximizes
z = cx and satisfies the constraints. Note that maximizing cx = CB-1b - cNxN with
*N > 0 is equivalent to minimizing *XN. We may express the corresponding linear

integer program in the following form.
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Minimize cNXN, where CN > 0 is the fixed relative cost of XN, subject to

BXB + NXN = b,

(XB, XN) > 0, and (XB, XN) is integral.

Consider the column vectors of B and N as elements of the free Abelian group

m

Fm = C Z,
i=1

the direct sum of m copies of the integers Z. Because A = (B, N) contains the m X m
identity matrix Im as a submatrix, the subgroup generated by the columns of A is the
entire free group Fm. Let FB be the subgroup generated by the columns of B. The
factor group G = Fm /FB is called the group of the linear integer program relative to the
basis B.

The group G is a finite Abelian group of order equal to the determinant of B,
Det(B). More precisely,

m

G = ® Z(ei)

i=1

where

m

eilei+l and I| ei = Det(B).
i=l

That is, G is a direct sum of the group of integers modulo ei, ei is a factor of ei+1, and
the product of the integers ei is equal to the order of G, Det(B). This follows from the
observation that for any m X m integer matrix B, there are unimodular integer matrices
U1 and U2 such that

U1 BU2 = D(ei)

where D(ei) is a diagonal integer matrix with ith diagonal entry ei, and eilei,+.

In group theoretic terms, there exists a basis {ei} for the free group

m

Fm = Z
i=l

such that {ciei} is a basis for the subgroup FB generated by the columns of B. We obtain
the following expressions in group theoretic notation:
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m m

Fm = ( Z = (EWei)
i=1 i=1

m

FB =(i (ejej)
i=1

where (g) denotes the subgroup generated by the group element g.

Using basic facts from group theory, we obtain

m

(O (ei) 
Fm i=1 mD lei) m

FB (i) -e (i) (eiej) ~ A) Z(ei)

i=1

where - denotes " is isomorphic to."

Let ep be the natural homomorphism mapping Fm onto the factor group G. Let bi
and ni+m be the column vectors of B and N, respectively. Consider

m n-m
BXN + NxN = E xibi + xm+inm+i = b

i=1 j=1

where xi are nonnegative integers and these relations are considered as an equation in the
free group Fm. In the next diagram the symbol )-) denotes the one-to-one homomorphism
i and the symbol -)) denotes the onto homomorphism p;

FB )-) Fm -)) G.

Applying ,p to the above equation over Fm, we obtain a corresponding equation over G:

m n-m

E xip(bi) + xi+mqp(ni+m) = sp(b).

Because bi is in the subgroup FB generated by the columns of B, which is the kernel
of *p, ep(bi) = 0 in G. For any group element g in G, define

V(g) = L Xir+m
SC(nj+m)=g

4
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if there is a column ni+m of N such that fp(ni+m) = g, otherwise set v(g) = 0. Thus, we
obtain the following group equation over G where G' denotes G - {0}:

v(g) g = gb
ge G+-

where gb = <p(b), v(g) > 0 and v(g) is an integer.

Define

7r(g) = Min {ci+mIlp(ni+m) = g}
ii

where c +i is the relative cost associated with column ni+m of N. If there does not
exist a column ni+m of N such that p(ni +m) = g, define 7r(g) as +00; that is, a large posi-
tive number.

To summarize, every linear integer program of the form

Maximize z = cx = cBxB + cNxN = cB-1Bb - (cBB- 1 N- cN)xN

subject to

Ax = BXB + NXN = b,

x > 0, and x is an integer,

where A is an m X n integer matrix with optimal basis B and b is an integer m X 1
column vector, induces the following optimization problem over the finite Xbelian group
G:

Minimize E r (g) v (g)

where 7r(g) > 0 subject to

Eu v(g)g = go
geG-

Here, v (g) are nonnegative integers, g are nonzero group elements in G, and g0 is a fixed
group element of G. Under suitable conditions, an optimal solution of this group problem
completely determines an optimal solution of the corresponding linear integer programming
problem. See Gomory [2] or Hu [3] for details.

5
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GEOMETRIC ASPECTS OF LINEAR INTEGER PROGRAMMING

Consider the linear programming problem:

Maximize z = cx

subject to

Ax = b

x > 0

where A and b have integer entries. Assume that {x1Ax = b and x > 0} is a bounded
set. There are four convex sets that may be associated with this problem that give insight
into the geometric structure of the corresponding linear integer program. They are the
following:

Po = {xIAx = b and x > 0},

PI = convex hull {xlAx = b, x > 0, and x is an integer},

pB = {xlAx = b and xN > 0}, where xN are the nonbasic variables associated with
a fixed optimal basis B,

P3 = convex hull {xIAx = b, xN > 0, and x is an integer}.

The vectors x are elements of Euclidean n space En. The convex hull of the set S in En
will be denoted by Conv(S). The convex hull of a set S is the smallest convex set con-
taining S. The affine hull of a set S will be denoted by Aff(S). The affine hull of a set
is the smallest affine subspace containing the set.

The set , is called the corner polyhedron associated with the optimal basis B of the
linear program. The geometry of this set PI plays an important role in analyzing the be-
havior of the associated linear integer program. The various relations between these sets
are illustrated by Fig. 1.

Note that the optimal solutions of the linear program correspond to vertices of the
convex polyhedron P0. The optimal solutions of the integer program correspond to
vertices of the polyhedron PI. See Gomory [2] for a more detailed discussion of the
preceding points.

ABELIAN POLYHEDRA

In the following discussion familiarity with basic facts from elementary group theory
will be assumed. Some acquaintance with Gomory's work [2] on the group theoretic
approach to integer programming would be helpful. It will be assumed that all Abelian
groups referred to are finitely generated and any references to a vector space will be to
Euclidean n-space En. Some definitions are required.

6
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Fig. 1-Diagram showing the relationships between
Po, Pi', PB, and Pil

Definition 1. Hyperplane (a, x) = (3

The hyperplane (a, x) = ( is the set {x E EnI(a, x) = 3} where a is a fixed vector in
En and x is an arbitrary vector in En. The symbol

n

(a, x) = aiXi
i =1

denotes the inner product of the vectors a and x, P is a scalar.

Definition 2. Half-Space H' = (a, x) < ifor H = (a, x) > (3

The half-space Hi- = (a, x) < (3 is the set {x E EnI (a, x) < (3 while the half-space
H = (a, x) > ( is the set {x E Enj(a,x)> >}.

Definition 3. Polyhedral Set

A polyhedral set is a nonempty set in En that is the intersection of a finite number
of half-spaces.

7
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Definition 4. Polyhedron

A polyhedron is a bounded polyhedral set or, equivalently, the convex hull of a
finite set in En.

Corresponding to a subgroup K of a free Abelian group Fn on n-generators is a class
of convex subsets of En. We shall call G(K, n) the Gomory class of Fn relative to the
subgroup K. The members Fk of G (K, n) will be called Gomory sets of Fn relative to K.
Consider the representation of the free group Fn on n-generators as the set of all n-vectors
v with integer components vi. Let S = {ve Fnlvi > 0 and v t 0}, and let {K + vivE Fn}
be the coset decomposition of Fn relative to the subgroup K.

Definition 5. Gomory set Fk

A Gomory set rk is the convex hull of (K + v) n S in En for some coset K + v where
the elements of (K + v) n S are considered to be vectors in En.

To every linear integer program there is an associated Gomory set whose geometric
structure gives information about the optimal solution of the associated integer program.
In certain situations the vertices of the associated Gomory set determine the optimal solu-
tion of the linear integer program. In addition, Gomory suggests that a further analysis
of the geometric structure of Gomory sets could lead to the development of improved
methods for solving linear integer programs. In terms of the original integer program we
are interested in the Gomory set generated by the coset FB + b where FB is the group
generated by the columns of the optimal basis B and b is the right-hand requirement
vector. Thus, it is of some interest to investigate the vertices of a Gomory set.

Definition 6. Vertex of a convex set

A vertex of a convex set is an element of the set that cannot be expressed as a con-
vex combination of other elements of the set.

Determining all vertices of a given Gomory set rk appears to be quite difficult in
general. Some insight may be gained by reformulating this problem in algebraic terms.
We shall need the following definitions. Note that there is a partial ordering on F1 de-
fined by v1 6 v2 if and only if for each component i, v! < vl?.

Definition 7. Minimal element of (K + b) n S

A minimal element vo of (K + V) n S has the properties

(i) v° G (K + U) n S

(ii) v e (K + b) n S and v < v° implies v = v°.

Definition 8. Irreducible element of (K + v) n s

An irreducible element v* of (K + b) n) S has the properties

(i) v* i (K+V) n S

8
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(ii) If V1 < v*, v2 < v*, and v1 and v2 belong to the same set (K + v ) n S for
some v, then v1 = v2.

Definition 9. Algebraic extremal of (K + 0) n S

An algebraic extremal v of (K + v) n S has the properties

(i) ve (K+0) n S

(ii) If nii = vi where vi e (K + b) n S and n > 0, then v = vi for some j.
j=1

The following theorem relates the vertices of a Gomory set rk = Conv((K + b) n S) to
the algebraic extremals of (K + v) n S. First, we require the following lemma.

Lemma 1. Assume

N

V*= E Xvi,
j =1

the components of v* and vi are rational numbers, the scalars Xj are positive, and 2Xj = 1.
Then the scalars Xj can be chosen to be rational numbers.

Proof. Embed the n component vectors v*, vj in En' 1 by adding an n + 1 compo-
nent equal to 1. Let A be the n + 1 X N matrix whose jth column is the vector (v0, 1).
Consider the matrix equation

AX = (v*, 1).

Assume that this equation has a strictly positive solution X > 0. Suppose A has a
submatrix B of rank n + 1. If X = (XB, XN) is partitioned relative to B, then

AX = BXB + NXN = (v*, 1)

BXB = (v*, 1) - NXN.

Since the components of XN are all positive, there exists a XN with positive rational num-
ber components such that II XN - XNII < e where 11 1I denotes the Euclidean norm and e
is an arbitrary small positive number. Note that B-1 has rational number entries since B
had rational entries. Continuity considerations imply that the components of 4B corre-
sponding to AN are positive rational numbers. Thus, the scalars Xj may be chosen as
positive rational numbers if the matrix A has rank n + 1.

Suppose the rank of {(vi, 1)} is less than n + 1, then add the least number of ortho-
normal basis vectors ek from En+1 so that the augmented set {(v , 1)} u {ek} has rank
n + 1. Consider the relations

9
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Q

(v*, 1) + L
k =!

N
ek = Z Xj(vi, 1)

j=1

1 [(v, 1) hi9 + 1 Lv*' ) + E e

N
= + L1 X 1(vi,1)

j=1

+ 9 1 k

k =1

By the previous case, the scalars on the right may be assumed to be rational numbers rk:

+1 [v*, 1) + e 1

1 (v*,1)
+ 1

N

j =1

N

= T
j=1

rj(vj, 1) + L rkek
k=1

rj(vi, 1) +

Let ({(v*, 1), (vi, 1)}) denote the vector subspace of En+1, generated by the set {(v*, 1),
(vi, 1)}. The manner in which the set {ek} was chosen determines that

({(v*, 1), (vi, 1)j) n ({ek}) = (0)

where 0 is the zero vector. Consequently, all the scalars rk - 1/(9 + 1) are zero and
k rk = Q/(Q + 1). Thus, the following relations hold:

N
(V*,1) = E (Q+1)rj(vj,1),

j=1

(9+1)rj > 0,

N
E (Q+1)rj =

j=1

9 + 1
= 1.Q + 1

This completes the proof of the lemma.

Theorem 1. Let rk be the convex hull of (K + v) n S. Then v* is a vertex of rk if
and only if it is an algebraic extremal of (K + v) n S.

Proof. Suppose v* is not an algebraic extremal of (K + v) n S. There exists a positive
integer p and vectors v- in (K + v) nl S that satisfy the following equation in the free
group Fn:

p

pv* = L Va.
j=1

10
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This equation implies the following vector equation over En:

p
v* = E 1 vj.

j =1

Since vp is a convex combination of other vectors in Sk, it is not a vertex of Fk.

Conversely, suppose v* is an integer vector in (K + 0) n S that is not a vertex of rk-
There exist vectors vJ in (K + v) n S and positive scalars Xj for which

N
v*= 21 Xjvj

j=1
and

Al= 1.

Since the components of v* and vJ are integers, Lemma 1 implies that the positive scalars
Xj can be chosen as rational numbers. Let Xj = kjlD where D is a least common denom-
inator for the set of rational numbers. Multiplying the preceding vector equation by the
integer D, we obtain an equation having meaning in the free group Fn:

N N
Dv* = E jvl 2 Qi = D

j=1 j=1

D
Dv* = L v'

j=1

where both v* and vi C (K + 0) n S. Consequently, v* is not an algebraic extremal of
(K + 0) n S.

The properties of being a minimal element, an irreducible element, or an extremal
element of a Gomory set ]Pk are successively stronger conditions. This is shown by the
following proposition.

Proposition 1. Every algebraic extremal is irreducible. Every irreducible element is
a minimal element.

Proposition 1 follows easily from the definitions. However, the converse does not hold.
There are minimal elements that are not irreducible, and there are irreducible elements
that are not algebraic extremals. This will be more apparent in the sequel. First, we
shall proceed in our development.

The nature of the Gomory set Fk = Conv ((K + v) n S) depends not only on the free
group Fn, but more critically on how the subgroup K is embedded in Fn. We shall illus-
trate this in a more restrictive setting. First, consider the following definitions.

11
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Definition 10. Torsion kernel of a free group

A torsion kernel K is a subgroup of a free group Fn on n-generators such that the
factor group Fn/K is a torsion group.

Definition 11. L. P. Kernel of a free group

An L. P. kernel K is a subgroup of a free group Fn on n-generators such that the
factor group F,/K is of cardinality n + 1.

The next theorem and succeeding remarks will relate Gomory sets to the group
optimization problem and linear integer programming.

Theorem 2. A Gomory set rk = Conv ((K + v) n S) associated with a torsion
kernel K is an n-dimensional polyhedral set.

Proof. It is assumed that K is a subgroup of the free group Fn with n-generators {ei).
By hypothesis, there is a positive integer Oi such that Ojej is in K. Suppose that v* E

(K + D) n S; then

v + Oje' E (K + b) f S.

The set {v*} U {v* + Ojei} is contained in (K + v) n S and is affinely independent.
Thus, rk contains an n-simplex and consequently rk is an n-dimensional convex set.

The following remarks on convex sets are well known or easy to show. The convex
hull of a set of integer vectors is a closed convex set. Any closed convex set is an inter-
section of closed half-spaces. Consequently, rk is an intersection of half-spaces. Applying
arguments similar to those used by Gomory [2, Theorems 6 and 7], one can easily show
that 'rk is an intersection of a finite number of half-spaces. Hence, rk is a polyhedral set.
Remark. Suppose that K is an L. P. kernel of the free group Fn on n-generators. It is
clear that K is necessarily a torsion kernel and the associated Gomory sets rk = Conv
((K + v) rl S) are n-dimensional polyhedral sets in En. In the sequel we shall consider
only L. P. kernels. These kernels are related to the group optimization problem in the
following manner. Let G be a finite Abelian group of cardinality n + 1. Consider the
following diagram

K ) , 'P)F )) G

where p is the homomorphism induced by associating the generator eg of Fn with the non-
zero group element g of G. Note that the kernel K of sp is an L. P. kernel of Fn and i is an
injection map. Consider the Gomory set rk = Conv ((K + v) rl S) where <o(v) = . Note
that (K + v) rl S consists of all vectors v whose gth components v(g) are nonnegative
integers and v satisfies the group equation lgeG+ v(g)g= = over G. In the sequel we
shall consider the Gomory set rR as the convex hull of all vectors v whose gth compo-
nents v(g) are nonnegative integers and v satisfies the group equation EgnG+ v(g)g = k.

12
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Let us consider the following group optimization problem:

Minimize

2 V(g) 7(g)

geG+

where 7r(g) > 0 is the fixed cost associated with the group element g, subject to

ge2+

V(g)g = R

v(g) > 0.

Some vertex v* of the Gomory set rk is a solution of this problem. Conversely, to every
vertex v* of Fp, there is a cost function 7r* such that v* solves this optimization problem
for the cost function 7r*. Furthermore, Gomory has shown that the vertices of r- are
closely connected with the optimal solutions of linear integer programs.

The next results deal with the rate of growth of the number of vertices of a Gomory
set as a function of the group structure of G. The problem of rates of growth of the
number of vertices was suggested by Gomory as an area for further work and investiga-
tion. This is important because the nature of the Gomory set reflects the structure of
the associated linear integer program. For simplicity we shall deal with the Gomory set
ro, the convex hull of all nonnegative integer vectors v in En such that

and U is not the zero vector.

Let V(G) denote the number of vertices of the Gomory set ro associated with the
finite Abelian group G.

Theorem 3. Suppose K is a subgroup of the group G. Consider

K ) )G 9° )) G

where i is the injection map and ,p is the canonical homomorphism onto the factor group
G/K. Then V(G) > V(G/K) IKI where IKI denotes the cardinality of the subgroup K.

Proof. Let g denote a generic element of G, and h a generic element of GIK. Let v be
an arbitrary vertex of Fo over GIK. Note that v(h) is a nonnegative integer and
ZhC(G/K)+ v(h)h = 0. Define

ep-1(h) = {g E GIep(g) = h} .

13
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In algebraic terminology, -p (h) is the coset gh + K in G where sp (gh) = h and gh is some
fixed member of the coset. Each coset gh + K contains IKI elements.

It is possible to construct a set of IKI vertices over G corresponding to v over GIK.
Intuitively, the canonical homomorphism fp is used to pull v back into G. More precisely,
consider the following construction. Suppose v(h) > 0 and define a vector 1v over the
corresponding coset p-1 (h) = gh + K as follows. Choose an arbitrary gh in p1 l(h) = gh + K
and define U(gh) = v(h) and vU(g) = 0 for all other g in gh + K. Repeat this construction
for each h in GIK where v(h) > 0 and notice that a set of at least IKI vectors vU correspond-
ing to v are finally obtained. Applying some elementary group theory, it follows that
ZgeG-K U(g)g = k where k is in the subgroup K. Using some elementary convexity argu-
ments and some facts about homomorphisms, we see vU to be a vertex of the Gomory set
rk over G. By choosing the vectors vU carefully, it is possible to force k to be the zero
element. Thus, to each vertex v of PO over GIK, there corresponds I KI vertices {-v of
ro over G. Intuitively the set {iv} are those vertices over G that are mapped by the
homomorphism (p onto v over GIK.

E' V(g)g O -- E v(g)O(g)
gEG-K geG-K

-= 21 2 V (g)P(g)
hc(GIK)+ gc<-'(h)

-= 21 21 Tv(g)h

-he(GIK)+[ ge ,5p<'(h) ]
= 21 v(h)h = 0.

he(G/K)+

Consequently, there are at least V(G/K)IKI vertices of the Gomory set PO over G and
Theorem 3 follows.

The following two corollaries are easy consequences of Theorem 3.

Corollary 3.1. Let Z(p) be a minimal subgroup of G where p is a prime. Then

V(G) > V (G~ p.
(Z (p)) 

Corollary 3.2. Let H be a maximal subgroup of G where G/H - Z(p) and p is a
prime. Then

14
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V(G) > V(Z(p)IHI.

For example, consider the two groups

G1 = Z(2) (3 Z(5)

G2 = Z(2) (E Z(4).

The following facts on the number of vertices of the Gomory sets ro for the respective
groups are known:

,V(Z(2)) = 1,

V(Z(4)) = 4,

V(Z(5)) = 10,

V(G1) = 40,

V(G2 ) = 9.

V(G1) > V(Z(5)) 2,

V(Gl) > V(Z(2))* 5 ,

V(G2) > V(Z(4)) 2,

V(G2) > V(Z(2)) 4.

The problem of determining strong inequalities to gage the rate of growth of the number
of vertices as a function of group structure appears to be quite difficult. The following
inequality is conjectured for groups G of large order. If G is a group of order

N

i =1

where pi is a prime, then

N

V(G) > I| V(Z(pi))ei .
i =l

Corollary 3.3. If G is not a direct sum of cyclic groups of order 2, then V(G) > IGI.

Proof. Suppose G = Z(p) where p is a prime other than 2. The following facts are easy
to verify. For each element go in Z(p), the vector (6g goO(go)) is a vertex of the Gomory

15
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set ro where bggO is the Kronecker delta and O(g) denotes the order of the group ele-
ment g. In addition, for each go in Z(p), the vector v satisfying

v(g ) = v(-g ) = 1

v(g) = 0, g r go or -k°

is a vertex. Consequently,

V(Z(p)) > IAP)l .

Suppose the corollary is true for all groups of cardinality less than n and IG1 = n. The
group G has a subgroup Z(p), and G/Z(p) is not a direct sum of cyclic groups of order 2.
Apply Corollary 3.1 and the inductive hypothesis to obtain

V(G) > V (Z)) p P =ZG(P)I

Note that for groups G that are direct sums of cyclic groups of order 2, Gomory [2] has
shown that the total number of vertices summed over all Gomory sets rg for g k 0 is
asymptotic to

IGII0g 2 IG [1 +0(jGI)]

where O(jGI) -+ 0 as IGI - .

There is an important class of polyhedra associated with the Gomory sets Fg. We
shall call these polyhedra Pg. Abelian polyhedra. It will be seen that the Abelian polyhedron
Pg is contained in l7g, and all vertices of l are vertices of Pg, but not conversely. The fol-
lowing definitions make this concept more precise.

Definition 12. Abelian polyhedron Pi

Let k be a fixed element of the finite Abelian group G. An Abelian polyhedron PR
is the convex hull of all nonnegative integer vectors v such that

21 v(g)g = g and v(g) < 0(g), (and v is not the zero vector)
guB+

where 0(g) denotes the order of the group element g.

Definition 13. Kernel polyhedron P0

A kernel polyhedron P0 is an Abelian polyhedron with fixed element g equal to the
zero group element.

16
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It is possible to describe the relation between the Gomory set rR and its associated
Abelian polyhedron P- in greater detail. Recall that rg is an n-dimensional polyhedral
set. In fact, Gomory has shown that

M

i =1

where

or {V C En1(7r v) > 1}

7r-= {vCEnI7(r7,v) > 0}

and the components ir-(g) of 7r- have other special properties that reflect the structure
of G.

The following remarks will indicate that

M N

PR = n i kn n7r
i=1 j=1

where

.rj = {v G EnI(7r,v) 6 1}

or

ir; = {v G En1(7r, v} > 1 1.

First, consider the following definition and well-known results on polyhedral sets.

Definition 14. Convex cone

A convex cone C is a subset of En with the following property. If v1 and v2 are
vectors in C, then X1 v1 + X2 v2 is in C where X1 and X2 are nonnegative scalars.

Theorem 4. [5,6] Let S = {v C EnIAv < b} be a polyhedral set in Euclidean n-space.
Then S = P + C where P is a polyhedron and C is a convex cone. In particular, C =
{vC E IAv 01}.

Theorem 5. Let P be an n-dimensional polyhedral set and H+ a half-space in Eu-
clidean n-space. Then every vertex of the polyhedral set P n X+I is either a vertex of P
in H+ or the unique point of intersection of the bounding hyperplane H of HI with an
edge of P that does not lie on H [7].

17
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Lemma 3.1.

N M N

Pi= ri n fl=n 7i nn r

j=1 i=i j=i

Proof. Recall that a polyhedral set in En is a finite intersection of half-spaces. In addi-
tion, a bounded polyhedral set is a convex hull of a finite set of points in En and con-
versely. See McMullen and Shephard [8] for details. Consequently, there are finitely
many half-spaces of 7Tj of the form

7rj = {v C E'I(7rj, v) < 11

or

ri. = {v E E'I (7rj, v) > 1}

such that

N

Pg= rgnfnri-
j=1

Note that by Theorem 4, the polyhedral set Ft is the vector sum of a convex poly-
Pg and a convex cone CB. The nature of Pa is difficult to analyze and Pgmhedron g gd g may

be distinct from Pg. Recall that Pi is the convex hull of all vectors v with nonnegative
integer components such that vgcG+ V(g)g = g. It is conjectured that the half-spaces Try
in Lemma 3.1 are of the form

7Tj = {vC E' EI(7r, v) < 1};

also, 7rj(g) = 0 for g * gj and 7r(gj) = 1/0(gj) where 0(gj) is the order of the group ele-
ment g.

The following results deal with kernel polyhedra. It is reasonable to say that the
structure of kernel polyhedra mirrors the structure of the corresponding group. This will
be supported in the following development. It is conjectured that the kernel polyhedron
will determine the structure of all Abelian polyhedra associated with a given group. Re-
call that any linear integer program induces an Abelian polyhedron which reflects the
structure of the integer program. If one knows the Abelian polyhedron, then, in many
cases, the optimal solution of the linear integer program is known. At any rate, kernel
polyhedra have some very interesting symmetry properties that shed some light on their
geometric structure. First, some definitions are required.

Definition 15. Collapsed kernel polyhedron

Let V be the set of all vectors v in En satisfying the following properties:

18
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(i) The gth component v (g) satisfies 0 < v (g) < 0 (g),

(ii) XgeG+ v(g)g = 0 in the group G of cardinal n + 1,

MI-
(iii) v is not the zero vector,

(iv) Some component v(g) is less than O(g).

A collapsed kernel polyhedron P over a group G is the convex hull of the corresponding set
V. Recall that 0 (g) denotes the order of the group element g.

Intuitively, a collapsed kernel polyhedron is the nontrivial or essential part of the correspond-
ing kernel polyhedron. The collapsed polyhedron is easier to work with and more clearly
reflects the algebraic structure of its underlying group.

Definition 16. Supporting hyperplane of a convex set

The hyperplane (7r, 3) is called a supporting hyperplane of the convex set S if

(i) S is contained in one of the half-spaces (7r', A) or (ir-, f)

(ii) S n (7r,fl) q5.

Definition 17. j-dimensional face of a convex set

A j-dimensional face F of a convex set S is a set of the form F = S r) (7r, A) where
(7r, f3) is a supporting hyperplane and Aff (F) is of dimension j.

Definition 18. Facet of a convex set

Let S be an n-dimensional convex set. A facet F of the convex set S is an n - 1 dimen-
sional face of S.

For example, consider a tetrahedron in 3-space. It is a 3-dimensional convex polyhedron.
A vertex is a 0-face, an edge is a 1-face, a side is a 2-face, or facet in this case, and the
tetrahedron itself is the unique 3-face.

The following results illustrate some of the interesting symmetries associated with a
collapsed kernel polyhedron. First, the following well-known result on polyhedra is
required.

Theorem 6. Let P be a convex polyhedron and let W C V = vertices of P. Then
Conv(W) is a face of P if and only if Aff(W) n Conv(V-W) = 4 [8].

Definition 19. Conjugate vector over a group

Let v be an n-dimensional vector in En indexed by the elements of a group. The
conjugate vector v of v is a vector whose gth component is v-(g) = v(-g).

19
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Lemma 3.2. The faces of a collapsed kernel polyhedron P over a group G occur in
conjugate pairs. If F is a j-dimensional face of P, there exists a j-dimensional conjugate
face F.

Proof. Let V be the set of vertices of P and the subset {vi be the vertices of F. Apply
Theorem 6. Thus,

Aff( })F n Conv {- b)

Note that v = Z Xivi implies v = I Xi-i, taking conjugates preserves linear combinations.
This implies

Aff({ Ti}) n Conv V-({Ti }

Consequently, F = Conv({vF}) is a j-dimensional face of P.

Corollary 3.4. Vertices of a collapsed kernel polyhedron occur in conjugate pairs.

Note that some faces may be self conjugate, that is F = F. However, conjugation is an
involution, F = F.

There is another class of symmetries associated with a collapsed kernel polyhedron.
Consider the next definition.

Definition 20. Complement vector over a group

Let v be an n-dimensional vector in En indexed by the elements of a group. The
complement vector vc of v is a vector whose gth component is vc(g) = O(g) - v(g) where
O(g) denotes the order of the group element g.

It is easy to see that complementation is an involutory, affine transformation of En:

UCC = v

v = Z Xivi and Y Xi = 1 implies vc = X ivif.

Lemma 3.3. The faces of a collapsed kernel polyhedron occur in complementary
pairs. If F is a j-dimensional face, there exists a j-dimensional complementary face F'.

Proof. The proof is similar to that of Lemma 3.2.

Corollary 3.5. Vertices of a collapsed kernel polyhedron occur in complementary
pairs.

In contradistinction to the operation of conjugation, there are no self-complementary
proper faces. This will be shown in the sequel. The next corollary formalizes this
observation.
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Corollary 3.6. A collapsed kernel polyhedron has an even number of proper faces of
each dimension.

If the facets of an Abelian polyhedron are known, then the Abelian polyhedron is known
and consequently, certain structural properties of a linear integer program associated with
the Abelian polyhedron are known. To further understand how the algebraic structure of
the group G is reflected in the geometric structure of the corresponding collapsed kernel
polyhedron P, it is necessary to analyze the facets F of P. Recall that the vertices of a
facet F span an n - 1 dimensional affine subspace and are a subset of the vertices of P.
Consequently, a facet F determines its supporting hyperplane (7r, 1) relative to a multipli-
cative constant. Thus, the facets of P fall into one of three classes depending on the type
of supporting hyperplane. The supporting hyperplanes may be one of the following types:

(i) iT0 = {v E En1(ir°, v) > 0},

(ii) ir+ = {v C En I (T+, v)6 1,

(iii) 7ri = {v C En I r-, v) > 11.

In particular, any facet F is of one of the following forms:

F = P n {vC En 1(ir°,v) = 0},

F = P n {v E= ,v) = 1},

F = P r {v C En(i7r', v) = 1}.

As a matter of notation, all vectors v and ir are in En relative to an orthonormal
basis. These vectors are indexed by group elements g of G, and v(g) or 7r(g) denotes the
gth component of the respective vectors.

Lemma 3.4. Let (7r°, v) > 0 be a supporting hyperplane of a collapsed kernel poly-
hedron P that induces a facet F. Then there is a fixed component g' such that ir°(g') = 1
and 7r0(g) = 0 for g # g'.

Proof. Recall that P is the convex hull of all nonnegative integer vectors v such that

21 v(g)g = 0, V 0 0 and v(g) < 0(g) for some component g.
geG'

Since Aff(F) is n - 1 dimensional, there are n - 1 linearly independent vertices of F.
Thus, the vertices of F would not all have zero components for two different coordinates
g1 and g2 . This means there is a fixed coordinate g', and for g * g' there is a vertex v*
in F and v*(g) > 0. However,

1roV*)= 21 -o(g)v*(g) = 0.
geG+
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Note that 7rr(g) > 0 for all g, since (iro, v) > 0 supports P and (6 g' gO(g)) is in P where
6g, g is the Kronecker delta. Combining the two previous observations shows that
7r°(g) = 0 for g 5 g' and 7rT(g') can be chosen to be 1.

Lemma 3.5. Let (7t-, v) > 1 be a supporting hyperplane of a collapsed kernel poly-
hedron P that induces a facet F. Then 7ri satisfies the conditions

(i) ir (g) > 1

(ii) 7r (g) + 7r (-g) = 1,

(iii) 7ri(g1 +g2 ) 6 7r-(gl) + 7r (g2 ) 6 1 + 7r (g1 +g2)-

Proof. Note that the vector (6g' g0 (g)) is in P where 5g' g is the Kronecker delta. Since
(Or, v) > 1 supports P, 0(g')7r(g) > 1 for all g' * 0 in the group G. Thus, condition
(i) holds. Because of the nature of the supporting hyperplane, the facet F contains n
linearly independent vertices. This implies that for any coordinate g', there is a vertex v'
of F such that v'(g') > 0. Note that v'(g') = 0(g') would imply that v'(g) = 0 for all
g = g' and 7r(g') = 1/0(g). Consider

(r, v') = E 7r(g)v'(g) = lr(g')v'(g') + 21 ir(g)v'(g)
geG+ g" g,

= 7r(g') + 7r-(g')[v'(g) - 11 + E 7ri(g)v'(g) = 1.
ga'g'

Suppose that s' = g1 + g2 . Define a vector v* as

v *(g) = v'(g) g g', g1 , or 92

v*(gF) = v'(g') - 1,

V*(gi) = V'(g1 ) + 1,

V*(g 2 ) = v'(g 2 ) + 1.

Consequently, v* is a proper vector, that is 0 S v*(g) < 0(g) for all g 0 0. The vector
v* satisfies lgeG+ v*(g)g = 0 and consequently is in P. Since (7r-, v) > 1 supports P, we
have that (7r-, v*) > 1. Hence, the first part of condition (iii) holds;

1r (s<) 6 7r(gl) + 7r (92).

Condition (ii) will be proved next and then the second part of condition (iii) will follow
as a consequence.
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Assume that go * -go and define a vector v' as

v'(g 0 ) = v'(-g 0 ) = 1

v'(g) = 0 g 0 go or -g0.

Note that v' is in P and thus (Or, v') = 7r-(g0 ) + 7r-(-g0 ) >' 1.

Consider a vertex v* of F such that v*(gO) > 0.

7r-(g0 ) + 7ri(go)[v*(g)- 1] + E fr-(g)v*(g) = 1.
go go

The validity of the following group equation is clear.

- = (v*(g) - 1)go + E v*(g)g.
g5' gO

Recall that ir- is subadditive on G. Thus,

irt(-g0 ) < 7tr(gO)(v*(go)- 1 + E r1r(g)v*(g),
gtk go

and consequently 7r-(g0 ) + 7r-(-g) < 1. Finally, 7r-(go) + tr(-g0 ) = 1 for all go # -go
in G.

It can be shown that condition (ii) also holds for elements go of order 2.

The second part of condition (iii) follows from the easily verified set of relations

ir (gl +g2) + irt(-g1) + irt(-g2) > 1,

r (g1 ) + 1T (g2 ) + 7r (-g 1 ) + 1ri(-g 2 ) = 2,

[17r(g1 ) + 7r (g2) - it(gl +g2 )] + [irt(gl +g2 ) + 7r (-g1) + it(-g 2 )] = 2,

1r (g1) + it(g 2) - lr(gl +g2) < 1.

It is seen that a supporting hyperplane (7r-, v) > 1 of P that induces a facet has a
very special algebraic structure as a function of the group elements of G. It will be
shown that any facet induced by a supporting hyperplane of the form (7r+, v) < 1 is the
complementary facet of a facet induced by a hyperplane of the form (7r-, v) > 1 or
(i7r, V) > 0.

Lemma 3.6. Let (7T+, v) < 1 be a supporting hyperplane of a collapsed kernel poly-
hedron P that induces a facet F. Then F is the complement of a facet induced by a
supporting hyperplane of the form (7ri, v) > 1 or (7ri, v) > 0.
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Proof. Suppose F is any j-dimensional face of P, induced by a supporting hyperplane ir.
There are three cases to consider. Suppose 7r is of the form (ir+, v) < 1. Let yC denote
the complementary vector and note that complementation maps P onto itself and carries
the vertex v of P onto another vertex, vc of P. The following relations are evident:

(7Tr,v) 6 1,

Or+, vc) 6 1,

(Or+ V+vc) = 2
g(EG+

Orl, vC) = E
geG+

(g) (g) - (Xr+, v) > gE
g(EG+

(if "v) > E
geG+

In fact, the face induced by the supporting hyperplane

(7r+, v) > 2 7r+ (g)0(g) - 1

geG+

is the complement of the face induced by the supporting hyperplane (AT+, v) < 1. It is
clear that these faces are parallel and disjoint. Note that this proves there are no proper
self-complementary faces of P.

For supporting hyperplanes of the form Or-, v) > 1 or (irt, v) > 0, the arguments are
analogous. The following is a list of the associated supporting hyperplanes:

(7r , v) > 1,

(Or, v) < E
geEG+

ri(g)O(g) - 1,

(T 0 , v) > 0,

(OT° V) < 21 it 0 (g)O(g).

g(=-G+

Suppose F is a facet induced by a supporting hyperplane of the form (7r+, v) < 1.
Consider the associated parallel half-space

24
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O1r', O > E7 l+(g)0(g) - 1.-
geG+

If

x = 21 7r+(g)0(g) - 1 > 0,
geG+

define 7r* = (1/X)7rT when X #s 0 and 7T* = 7r+ when X = 0. Then 7r* induces a comple-
mentary facet of the form stated in the theorem. It is sufficient to show that the case
X < 0 cannot hold.

Suppose the contrary. There exists a facet F induced by a supporting hyperplane of
the form (Or+, v) 6 1, and X = XgnEG+ 7r+(g)O(g) - 1 is negative. For any component g',
there is a vertex v' of F such that v'(g') < 0(g'). Otherwise, for every vertex v of F,
v (g') = 0(g') and since the set of vertices of a facet determines the supporting hyperplane,
7r+(g) = 0 for g * g' and ir+(g') = 1/0(g1). Then

Xt 0 F ) O(g') - 1 = O.

It is possible to construct a vector v* in F such that v*(g) < 0 (g) for every component g.
This construction is based on the following observations. Let v1 and v2 be two vectors
in F and define

v*(g) = v1(g) + v2(g) Mod O(g).

Note that any vector vo whose gth components are 0(g) or 0 satisfies (7r+, vo) 6 1. The
following sequence of relations is evident:

(r+, v1 + v2 ) - (XT+, v*) + (7r+, v0) = 2,

(7r+, v°) 6 

(7r+, v*) > 1,

(ir+, v*) 6 1,

Or+, v*) = 1.

By an inductive construction on the components, a vector v* in F of the desired form
can be constructed.
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Next define a vector v3 as

v3(g) = v*(g) g 7 go or -go,

v 3 (go) = v*(go) + 1,

v 3 (-go) = v*(-go) + 1.

It is clear that v3 is in P and consequently (7r+, v3) 6 1 = (ir+, v*).

The following inequality is a consequence of the above construction;

7Tr(g) + 7r'(-g) 6 0 for all g C G' .

The next inequality follows in a similar manner. Define a vector v4 as

v4(g) = v*(g)

V4 (g1 +g2 ) = V*(gl +g2 ) + 1,

V4(-gl) = V*(-gl) + 1,

v4(-g2) = v*(Ng2) + 1.

Thus,

Ir (g1 +g 2) + 7r (-gl) + iX (-g 2 ) 6 0.

Consider the original supporting hyperplane

(7r+, v) > 2
g(EG+

which induces the complementary facet. Recall that X = ZgeG+7r+(g)O(g) - 1 is negative and
consequently this supporting hyperplane can be expressed in the form ((1/X)iT+, V) 6 1.
By an argument similar to the above, it is found that

1 I+(g) +1 7i+(-g) < 0 for all g E G+.

Since X is negative, we have

26
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(II) 7r+(g) + 7r+(-g) > 0

T+r(g) + 7r+(-g) 6 0,

7r+(g) + 7r+(-g) = 0 all g E G+.

Using conditions (I) and (II), we obtain

7r (g1 +g 2 ) = ir (g1 ) + 7r (g2 ).

These relations imply that

r+(g) + 7r+(-g) = 7T+(g) + 7r+([0(g) - 1]g)

= 7r+(g) + [0(g) - 1]7r+(g) = 0(g)7r+(g) = 0.

Hence, 7r+(g) = 0 for all g. This is a contradiction. There are no facets induced by a sup-
porting hyperplane of the form (7r+, v) < 1 and f ir+(g)O(g) < 1.

The above discussion indicates that the facets of a collapsed kernel polyhedron
associated with an Abelian group G are determined by a set of functions XT with the
properties

7T:G - R where R is the real number system,

(i) 7t(0) = 0, where 0 is the zero group element

ir(g) > 01g) where 0(g) is the order of g,

(ii) 7r(g) + 7r(-g)= 1,

(iii) ir(g 1 +g2 ) 6 7r(gl) + 7r(g2) 6 1 + 7r(g1 +g2 ).

Actually, any function it that satisfies the above conditions generates a supporting
hyperplane (t, V) > 1 and induces a proper face of the collapsed kernel polyhedron over
the group G. This is apparent from the following relations. Suppose the following equa-
tion and ir'equalities hold for a vector v over a finite group G:

2 v(g)g = 0,
gEEG+

0 < v(g) < 0(g),

0 < v(go).

Then,
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-go = [v(go) - ']go + 2 v(g)g,
g A go

7r(-go) < Ir(go)[v(g0 )- 1] + 2 ir(g)v(g),

21 (g)v(g) > 7r(go) + 7r(-go) = 1,
g(=G+

(ir, V) > 1.

Consequently, (it, v) > 1 is a supporting hyperplane of P and induces a face of P.

There are interesting connections between the algebraic behavior of the functions it
and the geometric nature of the faces that they induce. These considerations motivate
the following definitions and results.

Definition 21. Local morphism

A local morphism 4 is a map from a finite Abelian group G to R/Z. It has the
properties

(i) 4 (0) = 0, where 0 and 0 are the zero group elements of G and R/Z, respectively,

GOi > (-g) = -I (g),

(iii) For any g, there is a nonempty set Sg1 where g2 (E Sg1 implies that 4 (gl)
+ 4'(g2 ) = 4'(g1 +g2).

Definition 22. Core of a local morphism

The core of a local morphism VI is the set of all unordered pairs [g1 , g 2] of elements
of G with the property

(i) (g1) + 4'(g2) = (g1 +g2).

Recall that R/Z denotes the circle group, the factor group of the real numbers under addi-
tion modulo the integers. Let X denote the canonical lifting of R/Z to the interval [0,1].
Recall that R/Z can be considered as the collection of cosets {x + Z} where 0 K x K 1
and addition is performed modulo 1. In this case X(x + Z) = x.

Lemma 3.7. Any nontrivial facet of a collapsed kernel polyhedron of the group G
induces a local morphism a of G. Any local morphism a of G with the property

W (g1 +g2) + X4(-g1) + XO (-g2 ) > 1,

induces a face of P.
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Proof. Any nontrivial facet is associated with a supporting hyperplane of the form
(iT, v) > 1. It was shown that ir has the properties

(i) 7T(0) = 0,

(ii) 7r (g) + 7Tf(-g) =1

(iii) 7r(g1 +g 2) 6 i(g 1) + 7t(g2) < 1 + 7r(g1 +g 2 )-

Let (p denote the canonical homorphism of R onto the factor group R/Z. Consider
the composite map 4 = pipT. Conditions (i) and (ii) assume the forms

(I) (0) = 0,

(II) (g) + 4'(-g) = (1) = 0.

Consequently, 4 is a local morphism.

Suppose 4 is a local morphism with the property

X4'(g1 +g2 ) + XVI(-g1) + X4'(-g2) > 1.

Define 1r = X4. Then the following relations are evident:

7r(g1 +g 2 ) + 7r(-g1) + 7r(-g2 ) > 1,

(i) iT(O) = 0;

it(0) + 7T(g) + 7r(-g) > 1,

7r(g) + 7r(-g) > 1,

(ii) ir(g) + it(-g) = 1;

ir(-g1 -g2 ) + 7r(g1) + 7r(g2) > 1 = 7r(g1 +g2) + it(-g 1 -g2 ),

(iiia) 7t(g1 +g 2 ) 6 7r(g1) + 7T(g2 );

ir(g1 +g 2 ) + 7r(-g1) + 7r(-g2) + 7r(g1) + ir(g2) > 1 + 7r(g1) + ir(g2),

iT(g1 +g 2 ) + 2 > 1 + iT(g1 ) + 7r(g2 ),

(iiib) 7r(g1) + 1T(g2) < 1 + it(g1 +g2 ).

Consequently, ir induces a face of P.
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The significance of the concept of local morphism and core elements is more clearly
shown in the next result. This result indicates the close connection between the geometric
structure of a facet and the algebraic properties of the associated local morphism.

Theorem 7. Let (Or, v) > 1 be the supporting hyperplane of a facet F.
integer vector in F with v(gl) > 0 and V(g2) > 0; then iT(gl) + 7r(g2) = 7r(g1
thermore, the vector v* is also in F, where v* satisfies

v*(g) = v(g)

Let v be an
+ g2). Fur-

g7 *g 1 + g 2,g1 , or g2,

v*(gi +g2) = v(g1 +g2) + 1,

V*(1g) = V(gi) - 1,

V*(g 2 ) = V(g 2 ) - 1.

In addition,
U satisfies

if v(g0) > 0, go = g1 + g2 , and 7r(g0 ) = 7r(g 1 ) + 7t(g 2 ), then v is in F, where

v@(g) = v(g)

iJ(g1 +g2 ) = v(g1 +g 2 ) - 1,

U(g1) = V(g1 ) + 1,

13(g2 ) = V(g2 ) + 1.

Proof. Consider(ir,v)= 2
geG+

Ir (g)v(g) = 1

= 1(g1 +g2 )v(g 1 +g2) + 7T(g1 )V(g1) + 7T(g2 )V(g2) + E it(g)V(g).

If the definition of a collapsed kernel polyhedron over a group G and some elementary
algebra are used, the conclusions of the theorem are easily derived.

Corollary 7.1. Let F be a facet induced by the supporting hyperplane (ir, v) > 1.
If v* is a vertex of F such that v*(go) > 1, then for all vertices v of F, v(-go) is 0 or 1.

Proof. Suppose there exists a vertex v of F such that U(-go) > 1. Consider the relation(ir, v*) + (ir, U) = it(go)v*(go) + 2 7r(g)v*(g) + 7r(-go)iJ(-gO)

+ 21 7t(g)U(g) = 2.
go- go
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However,

7 (go)v*(go) + Xr(-g0 )-U(-g0 ) > 2.

Thus, we obtain a contradiction and this establishes the corollary.

In conclusion, the above results offer but a glimpse of some of the interesting alge-
braic, geometric, and computational problems associated with the group theoretic approach
to linear integer programming. It is clear that there are a number of interesting questions
which are unresolved. For example, can a precise geometric characterization of Abelian
polyhedra be determined? What is the exact connection between the algebraic structure
of an Abelian group and the geometric structure of its associated Abelian polyhedra? How
can the special structure of Abelian polyhedra be exploited to develop efficient algorithms
for solving linear integer programs on a computer?
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Appendix A

COMPUTER LISTING

The group theoretic method for solving linear integer programs has been implemented
on a computer. The following is a listing of an implementation on the CDC 6600 com-
puter. The program is written in Fortran IV and runs under the Kronos Time-Sharing
System. Following the program listings is an example problem that was solved using the
program.

Consider the following example of a linear integer program:

Maximize Z = 4x1 + 5X2 + X3 subject to 3x1 + 2x2 6 10, X1 + 4X2 < 11, 3x1 + 3X2
+x3 6 13, X1 , X2, X3 > 0, and x 1, X2 , and X3 are integers.

This program was run on the computer, and the following correct results were obtained.
It should be cautioned that the computer program is experimental. There is still much
work to be done on developing numerical methods for the group theoretic approach to
linear integer programming.

3X1 + 2X2 6 10

x1 + 4X2 < 11

3x1 + 3X2 + X3 6 13

X1, X2, X3 > 0 and X1, X2, and X3 are integers,
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IF LJ Er' r' r 0 TCO 100
,10 40 I=1 irMIi
IF(RI (I 11 . HE.0.0r'0) GO TO 50

40O COHTIHIUE
50 IF'IAhIJ.1 I LT.O.0DOl GO TO 60

GO;C TO se
6- 7'I.riO 7 .1=2 1F
70 AU':NHK = 1.0j10

C::FILL PI' CIT 1 H1l iI
I1' i; H1i[r = 0
I FI 1-1li = 1
Di lRL SIMPLE::

L. HHIH = l.0D1 -:O0
DO Xs I=cs t1lti

IF'f H(I51].GE. ANIN) GO TO 9.0
f~sI-hu = h .1:,1'
AMINiI = I-' i I I i H I [ I L I E

se4 C:OiT INtUE
I = IN@IN
IFf IH I.GE .ETA:' GO TO 100
i = LEXsCLiOiIi
IF f E L.EC!.I l GO liJ 100
IEfI-l)i = L
F. = i H.AS f.Ji
ItilE; = 1
C A-LL PFI'OTI I, 1)
1, TO sO
'OF'PINHAL SOLUTION PRINT-OUIIT

10313 PRINT 105OYA(1L1)
1iO 110 I=c'2 NP
II = I - 1 '
IF ( I r(II). EO. 1) PRINT 100Y11I
IF(IIB(IIl.El!.1I GO TO 110
PFRINT 1060i IIA(I, l)

11 e C:ONT I NUE
ILO = HP .+ 1
1l1 120 I=ILO,iN
II = I - NP
IF 1: Ir: l I-i . EQ. I i FFPINIT 1
IF I -:(I-1I .EC!. lI GO TO 1
PRINT 1070,IIA(HI,1l

12 L: OHT I NIUE
PERPIUTE EBSIS INTO FIFST
icI = i
H:: = +
ilO 141 .1=1N[1H1
IF'I IE:i'.i E'IIO) GO TO 140
JI = I + I
IOI 1:F LI=11

IFEtiP = Ihil q IJC1:)
IH I.lIC:i = IhlI,.ji

1.:3 IAf I,.J) = iTEMP
140[ C[l:ITI NUE

IE = 3

rr,

, A (I, i:

1*1c+1II IAhlI, 1:;

M1+1I :COLUMNlSS
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fiii U-, CALL SFOIRM1 (JC)i
ll UI se CALL EOR( I E:i

el 119se CALL SETUP (JCi
L11c0U IE = 4
01.10 C:ALL rNf JI IC)
01220i CFiLL EROR ( IE)
Ul U0 C:ALL ::TRAk:: ISCIL)

eI 12 4 CALL S;OLU...E ( ISOL)
0 1 250 BTOIP
0 1 2. 0 1 LeU FOFRMAT (:3:<, 16HTY* PE MATRUIX SIZE)
0 12 70 e 1 Li FORMAT (:3::, 1 6HTYPE COST YECTOiR)
01280 102L FOF:MAT f:s;:., 2:-3HTPE REQLUIREMENT t.EIJTOFlcl
01290 i U3i F'IORMAT (:3X, 29HTi"PE NO. OF NON-ZERO ELEMENTES)
1300 1040 FFRHAT(5;, 2ISFI0.5:s
01310 113 ,E1 FL3F AT (:3:.:, I OHAlX IMUM = , De20. 10:1
0 1 320 106F FOFRMAT (6X:, 1 3- , 2X;, 120. 1 0)
013.30 i07O FORMAT (6:::, I:-3-, 1HS, iX, t12'0. I:0
01 O4 1030 FORMAT (ES6,, I 3 E 2X D20. 10 , 7PHEAS I C:
U 1 LIe 1090 FORMAT .613, 1 HS 1 l D20. 10, 7 WA-SE ; I C:)
e 1 e:60i END
eii U FUtNCT ION LE CLO I)i
e 1 IE COMMON /ALFHh HI h i0 1 :-sei.I
01 -'Li 15COMMON 'BETAh IDETR N1, N
014Li D I MENS I ON1. *J 'r6L, I2
U0141Li DOULBLE PRECI-;ION H :.:- .:MA:.:
01420C INITIAL COLUMN SEARCH
0 1 430 M11 I = N1 + N + 1
01440 [PF = N + 1
01450 ::.A.: = -1. 0D250
01460 10 = 1
01470 JO = e
01430 IC.= l
01490 IF = 2
Ul5li0L DO 11 i I= =2NF
Liili IFfAIIq I, LGE.0.oDro:l GO TO 10
0L1 A ii Hi J) A, (I lJ)
e 15i3L IF H.LT. H:3M:3i GO TO 10
0i154 IFJ LT HH::VI Je = 11
u150 '*:UlA;:H

0L60 -LI = IJl + 1
01570 Jz I: 1. 1N I) J
0L15EigL 10 CONTINUE

1590Li IIi = I 1
L160L IF( JlO El !.ii PRINT l,1000I, Il
L1-1 U 1000 FORrtAT ' :- .- HI NFEHS I BLE COND IT I ON DETEC:TED AT' ROIWI , IS)
i6tU IF(JL.El'o.el IJIihIC) = 0

l'- LIse IF(LJ. El' !.ii ,,o TO 40
e 16-40l FIND LEICO . GFEhTES;T COLUMN
Li6 50s 20 IF (JO.Il Ef' 11 i GO TO 40
01660 IO = I + 1
01 670 IF (IT. GT. Ml1 i PRINT 1010
01630 1010 FORMAT (6:::, 25HERROR 2 IDENTICAL COLUMNS)
01 690 IF (f. GT.MN -1) STOP
01700 .::M:::: = -1.0D250
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02790 D10o1 il I Ii 'jH -
0r2E800 IF I:E:E;:I INI,.l J) .1EI;!.e 0 lI) TI) 10 
C0r2'810 C IF (f I h1: I I IN I _ J) i .LE . I: Gl) TI) 1 0

0 28 I2 0 IMIN I
0:1:3, r8 :J: I N J
02840 NIH IhEB:S IIA(IJ'i)
0r2850 1 0 CONTIHUE
82860C PERMUTE ROW JG ANiD I M I N
028370 DOl r2' J=JC:, MN
8r2E:8 8 ITEMP = IAIJCJ)
oD8r298 Ih .JG, Ji = Ih 1IIri, Jl
L2X-9'r 20 IA(h IMIJi = ITEMP
Li,'918 PERMIUTE C -ILULI-1N JC AND JMIN
8r29r28 M = H + ::
0r29s-r8l DO 30 I=JC:, MS
Lr2948 ITEMP IN I JCO)
LI 95L IA(IJGI I IA(IJIMI)
U2-'t-Li- Li IHAI JMIN) = ITEMP
82-97 fr E-URti
829880 ENDL

i8299L SUBFIOUTINE SETUPF(J1)
1i:-ULI8 IOMMONii /BETA/ IDETRqtH

O301018 COMMON HlGl MMHA/ C:ST(500) , IA (60, 100) II:(100:,IGRP (5001,3)
3.1,211 Li rMEiSIONI IkviEC(10)

L:--i:--:C: NIH'N- B NSIH MODIULO B:ASIC:
030:40 JI = N1 + 2
8:--:8SL J2 = M + N + 2
LI.L:ee M11 = M + 1
Li3Li L DiO 10 I=lNMi
L .LI,- L DO 10 J=J1,J2
L Li90 IAhI,J:I = r1lCJD.(IA(IqJ)5IABS(IA(II)))
01001 10 IF(IA(IJl.LT.0j IAtIqJ) = IA(IJJ + IAB:S(IA(II)I
Li .1-:11. INITIALIZt IGRP FOR GROUP MINIMIZATION
LiS128 IDETR 1
Li1 Li rII 2i I=1, M
Li:148 r20 IDETR = IDETR3IRES1Ir'IqI'J
LI 1 Lv DO :3L I= 1 IDETR
0 3316 0 IGRF'~l)~ = 8

8E-rf38 GRPl:I2i = 8

8L r 1 1 -- F 8 ST(1i 1 I.8E1 0
Li3.2LLi ENTER Ni I-N :USIC INTO GROUP TABLE
0321le Jr = ii + N + 1
03220r DO S8 J=J1 sJr
Li r8 DLl 41 I= iIM1
e:3240 40 IU, EC(lI'. = IA(IqJ)
Li250 LJi = IMDRF IU IEC)
Li Lt-LI Rl = RCST I IN (1 1+: i J)
Li L: 2 IF IF(R.LT.CLST(JA)) IGRFlJA,1)i = IA(11+C-:,J)
Li se O. 'L .Ii STI HMItli(:ST(JIA)sRO)
LI--isl IST1iI i L.i
0: 3 se0 RETURN
0: 13310 END
0:3r320 FUNOT I ON RCST (I)
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QJ4 -'fl I F 1:I . ElQ!. 1 : I NA-:-:= I D I NT 1S)
Li 4Li IF 1: I. EQ. 11 GO TO :30
04410 ISOL (I-1i = IDINT (S)
1144f2-'8 :-1.8 CONT I HU11-E
Liq4: Li PRItNT 1000, I MAX
84448 DO1 4e I=1,N
0L4 P5L IF XIE:B ( I. Et!. 8) PRINT 1010, I, ISOL (1I'
L4iN-Li IF (IB (I) .EQ. 1) PRINT 1020, IISOL (I:
Li 4' 7 40 (COT I HIUE
844a Mi-H 1 = N - 1
Li44-'L ll Li I Hi M[X1
L458 IFiiIFfl:B I .ElC!. 0 PFINT 10:30, IqISIL(:II
0 1i0l IFf IBI Ii I. El. 1) FRINT 1040, I, ISISOL(I)
es.e 2 se 50 CONT I I lE

I 5t Li 1000 FOFN1T I :--:; 1:HINTEGER MA::::INUN = , I 1O)
.4541 101(1 FIMNAT IF.' ¾ Io3, PX I10)

045, . 1020 FCIRFHT i I 3 E X ! I 1 0 7HAB:AS I C:A )
L4sit-L 1 0:30: FOPRMAT I-. I3?, HI3 1HS;, 1X, 110)
Le4se it L1040 FOPMNT It-1.'.. I3, IHS, 1:X, I1, 7HABASIC*°)
Le4 Le RETURN
e 4s 598 EHlD
1.4£e- LiL FUII :TII I tB:AS (FK::
8.4t6 1il L L01 H1 10I NALPHA/ A (60,30)
846Ee CI:OHuON `BETA' IDETR, l1 N
Li46t-Li DOUBLE FFECISION A
e46-4e I E =
L4t-.s Li N = I + ri + 2
Lit-LI8 NI = N + 1
e4f Lfi DOLC 2L I=L', MN
c14t- L.:eI IFI I i HE-. l (-1.0D110)) GIJ TO 20
14t-0 -cO il J=1,[Ni

L+ LI'88 IF .I.E!. F I GO TO 10
044, I l IF(NIIIjH.NE.0.ODO) GO TO 2'0
041

d-20 1e IONT I NUE
0147-3- LI EBA:; = I - 1
14741 GO TI: :30
e45 L 58 Eli C:OIIT I NIJE
04t 68 H CLL EROR(IE)
1147 Li LI RETURN
8 4. .'88:' END
01.479 --;UBROUTINE EROR(IEi
1.4: :se 11COI[IMCIN .'BETA/ I DETR, M, N
Li4 :il: C:ONNON fGAfNiMA/ CST (500) , If (60, e100), IB: (1 00), IGRF' (500see,:
1.14 Lii MN = N + HI + 2
1.14-::--:e Li = N + 1
Lif 41.4 GO TO (10920930,40) 1IE
1.4 ,LI 10 FPRINT 1000

14s-LI GO 1ro 50
1.14 i`U 20 PRI NT 1010
046c80 GO 'TO 50
14s890 8 PR I NT 102(10

04900 PRINT 1025i (IA (1I, I, I=1, 11)
04910 GO TO 50
04920 40 PFINT 10:30, 1I, CST ( I ,IGRPF (I, IIGRF' ,I IGRFP' I ITT=1* Tirir.TP

42



NRL REPORT 7797

4--i: :2 00 FOF:FI T I :-:; HEF:FF IN SU:BROUTINE TF Al
e4 '-4e.+ ::: , 2E t.HFI-ll IF II HIM I IZAT I CIN PF:OB:LEu Il
L4-9is 1010 FOF't:NAT I _--,:, L.4HEF'RFR IN SUIr:R OUT I HE NBN :3:,
L14 -~'-1+ :--,::HTF I iUllLE LiC:CAT I HG [ON-E:ASIl I[IECTIC'F 'I
L14C9 L 1 I 1020 FORMA1T I 1 -i ', 1 4H I NTELER MATF I :.. i

ri4 Sei 1 025 FONIAT 15 I 5'1
Li t lf8 1(I1:3-0 F0ruAT I flX , 24HGF:OLIP NININIZATI N TNiBLE'/ f(>:, I:3- -:3:.: F 9. 5, E:3', ISi
5Ll-1+ .,::K I5, L 2v I 'J i 
eL i1 i Li -50 RETUFRN

50s20 END
READY.
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